Impact of Security Factors in Software Project Risk Assessment using Neural Networks
نویسنده
چکیده
“software risk” is the measurement of the probability of an unwanted output that could affect the software product’s development process. It always includes the chance of being uncertain and a potential for loss. This paper extends the concepts of Constructive Cost Model (COCOMO) model into fuzzy Expert COCOMO by introducing security factors as additional parameters for the assessment of risk of a software project. This approach is validated with the NASA60 project data and proved that Genetic Algorithm provided efficient risk values with different levels of security parameters. However, in the earlier methods, there was a limitation in effectively dealing with linguistic forms of imprecise and uncertain inputs. This resulted in increase in the cost of designing the mechanisms for security purposes, that formed a major part in the overall cost in the development process of the software product. The risk value of a software project could well be reduced by taking security factors into consideration. The neural network techniques used for validating the risk values are Kohonen neural network, Radial Basis neural (RBF) network, Learning Vector Quantization, Genetic Algorithm(GA). A comparison study has been provided for all the neural network models implemented in order to examine their performances.
منابع مشابه
Risks assessment of forest project implementation in spatial density changes of forest under canopy vegetation using artificial neural network modeling approach
Risks assessment of forest project implementation in spatial density changes of forest under canopy vegetation using artificial neural network modeling approach Nowadays, environmental risk assessment has been defined as one of the effective in environmental planning and policy making. Considering the position and structure of vegetation on the forest floor, the main role of forest under ca...
متن کاملDeveloping an Integrated Simulation Model of Bayesian-networks to Estimate the Completion Cost of a Project under Risk: Case Study on Phase 13 of South Pars Gas Field Development Projects
Objective: The aim of this paper is to propose a new approach to assess the aggregated impact of risks on the completion cost of a construction project. Such an aggregated impact includes the main impacts of risks as well as the impacts of interactions caused by dependencies among them. Methods: In this study, Monte Carlo simulation and Bayesian Networks methods are combined to present a frame...
متن کاملProject Portfolio Risk Response Selection Using Bayesian Belief Networks
Risk identification, impact assessment, and response planning constitute three building blocks of project risk management. Correspondingly, three types of interactions could be envisioned between risks, between impacts of several risks on a portfolio component, and between several responses. While the interdependency of risks is a well-recognized issue, the other two types of interactions remai...
متن کاملA New Architecture Based on Artificial Neural Network and PSO Algorithm for Estimating Software Development Effort
Software project management has always faced challenges that have often had a great impact on the outcome of projects in future. For this, Managers of software projects always seek solutions against challenges. The implementation of unguaranteed approaches or mere personal experiences by managers does not necessarily suffice for solving the problems. Therefore, the management area of software p...
متن کاملDiagnosis of brain tumor using PNN neural networks
Cells grow and then need a very neat method to create new cells that work properly to maintain the health of the body. When the ability to control the growth of the cells is lost, they are unconsidered and often divided without order. Exemplified cells form a tissue mass called the tumor. In fact, brain tumors are abnormal and uncontrolled cell proliferations. Segmentation methods are used in b...
متن کامل